IMPLEMENTASI ALGORITMA DECISION TREE UNTUK KLASIFIKASI PRODUK LARIS Decision Tree C4.5 Produk Laris
Main Article Content
Abstract
Decision Tree C4.5 algorithm is an algorithm that can be used to make a decision tree. Decision tree (Decision Tree) is one method that is quite easily interpreted by humans. However, this algorithm has never been tested for product classification using private data (stock data and sales of goods at PT Cipta Karya Gorontalo). Therefore this study aims to test the accuracy of C4.5 in classifying best-selling products (private data). As a result of the evaluation of product classification models using Decision Tree C4.5 obtained from this study amounted to 90% and AUC value of 0.709 where this value is included in the Good Classification. It can be used as a data mining classification method Decision Tree C4.5 algorithm is accurate in classifying hot-selling products.
Keywords— Decision Tree, C4.5, Classification, Best-Selling Product
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
[1] B. Utami and P. Aliandu, “KLASIFIKASI PENENTUAN TIM UTAMA OLAHRAGA HOCKEY MENGGUNAKAN ALGORITMA C4.pdf,” Proc. Int. Conf. Information, Commun. Technol. Syst., vol. 5, no. 4, pp. 1–5, 2013.
[2] X. Wu et al., Top 10 algorithms in data mining, vol. 14, no. 1. 2008.
[3] J. Eska, “Data Mining Untuk Prediksi Penjualan Wallpaper Menggunakan Algoritma C45,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 2, pp. 9–13, 2016.
[4] D. F. Ristianti, “Komparasi Algoritma Klasifikasi pada Data Mining,” vol. 1, no. 1, pp. 148–156, 2019.
[5] Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform., vol. 2, no. 2, pp. 213–219, 2017.
[6] W. D. Septiani, “Dan Naive Bayes Untuk Prediksi Penyakit Hepatitis,” vol. 13, no. 1, pp. 76–84, 2017.
[7] A. H. Nasrullah, “Penerapan Metode C4.5 untuk Klasifikasi Mahasiswa Berpotensi Drop Out,” Ilk. J. Ilm., vol. 10, no. 2, pp. 244–250, 2018, doi: 10.33096/ilkom.v10i2.300.244-250.
[8] I. Carolina and R. Kresna, “Klasifikasi kelahiran prematur menggunakan algoritma c4.5,” Semin. Nas. Teknol., pp. 668–672, 2018.
[9] Hariati, M. Wati, and B. Cahyono, “Penerapan Algoritma C4.5 Decision Tree pada Penentuan Penerima Program Bantuan Pemerintah Daerah Kabupaten Kutai Kartanegara,” Jurti, vol. 2, no. 1, pp. 27–36, 2018.
[10] Y. Rosela, “IMPLEMENTASI KLASIFIKASI DECISION TREE MENGANALISA STATUS PENJUALAN BARANG MENGGUNAKAN C4 . 5 ( Studi Kasus : Pt . Matahari Department Store Medan Mall ),” J. Pelita Inform., vol. 18, no. 1, pp. 143–150, 2019.
[11] D. R. S. P, A. P. Windarto, D. Hartama, and I. S. Damanik, “Penerapan Klasifikasi C4.5 Dalam Meningkatkan Sistem Pembelajaran Mahasiswa,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 593–597, 2019, doi: 10.30865/komik.v3i1.1665.
[12] D. R. Ente, S. A. Thamrin, S. Arifin, H. Kuswanto, and A. Andreza, “Klasifikasi Faktor-Faktor Penyebab Penyakit Diabetes Melitus Di Rumah Sakit Unhas Menggunakan Algoritma C4.5,” Indones. J. Stat. Its Appl., vol. 4, no. 1, pp. 80–88, 2020, doi: 10.29244/ijsa.v4i1.330.
[13] L. N. Rani, “Klasifikasi Nasabah Menggunakan Algoritma C4.5 Sebagai Dasar Pemberian Kredit,” INOVTEK Polbeng - Seri Inform., vol. 1, no. 2, p. 126, 2016, doi: 10.35314/isi.v1i2.131.
[14] D. Istiawan and L. Khikmah, “Implementation of C4.5 Algorithm for Critical Land Prediction in Agricultural Cultivation Areas in Pemali Jratun Watershed,” Indones. J. Artif. Intell. Data Min., vol. 2, no. 2, p. 67, 2019, doi: 10.24014/ijaidm.v2i2.7569.
[15] P. Assiroj, “Kajian Perbandingan Teknik Klasifikasi Algoritma C4 . 5 , Naïve Bayes Dan Cart Untuk Prediksi Kelulusan Mahasiswa ( Studi Kasus : Stmik Rosma Karawang ) ( Studi Kasus : Stmik Rosma Karawang ),” Media Inform., vol. 15, no. 2, pp. 1–17, 2018, doi: 10.5281/zenodo.1184054.
[16] E. Fitriani, R. Aryanti, A. Saepudin, and D. Ardiansyah, “Penerapan Algoritma C4.5 Untuk Klasifikasi Penempatan Tenaga Marketing,” Paradig. - J. Komput. dan Inform., vol. 22, no. 1, pp. 72–78, 2020, doi: 10.31294/p.v22i1.6898.