IDENTIFIKASI PENYAKIT LEAF MOLD PADA DAUN TOMAT MENGGUNAKAN MODEL DENSENET121 BERBASIS TRANSFER LEARNING
Main Article Content
Abstract
Penyakit leaf mold pada daun tomat merupakan penyakit bercak daun yang disebabkan oleh jamur Cladosporium fulvum. penyakit tersebut biasanya terjadi pada tomat yang dibudidayakan dalam lingkungan lembab. Gejala penyakit yang sulit terdeteksi secara manual, dapat menyebabkan penurunan kualitas dan hasil panen tomat selama 10 tahun terakhir. Penelitian ini bertujuan untuk mengidentifikasi penyakit leaf mold pada daun tomat menggunakan pre-trained model convolutional neural network. Model tersebut yaitu DenseNet121 dengan teknik transfer learning. Penelitian ini menggunakan sebanyak 2.283 dataset citra daun tomat, yang terdiri dari 3 jenis kelas prediksi diantaranya yaitu penyakit leaf mold, daun tomat sehat, dan penyakit tomat lainnya yang dimasukan kedalam kelas prediksi penyakit lainnya. Hasil penelitian diperoleh model A sebagai model terbaik diantara 3 model yang diuji coba, dengan nilai akurasi, precision, dan recall yang dihasilkan yaitu sebesar 92,6%, 93,3%, dan 93%.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
[2] K. Muchtar, Chairuman, Y. Nurdin, and A. Afdhal, “Pendeteksian Septoria pada Tanaman Tomat dengan Metode Deep Learning berbasis Raspberry Pi,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 107–113, 2021, doi: https://doi.org/10.29207/resti.v5i1.2831.
[3] A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” vol. 4, no. 1, pp. 45–51, 2020, doi: https://doi.org/10.30871/jaic.v4i1.2017.
[4] N. K. Chauhan and K. Singh, “A review on conventional machine learning vs deep learning,” in 2018 International Conference on Computing, Power and Communication Technologies, GUCON 2018, 2019, pp. 347–352, doi: https://doi.org/10.1109/GUCON.2018.8675097.
[5] F. Alviansyah, I. Ruslianto, and M. Diponegoro, “Identifikasi Penyakit Pada Tanaman Tomat Berdasarkan Warna Dan Bentuk Daun Dengan Metode Naive Bayes Classifier Berbasis Web,” vol. 05, no. 1, 2017, doi: http://dx.doi.org/10.26418/coding.v5i1.19171.
[6] M. F. Susila, B. Irawan, and C. Setianingsih, “Deteksi Penyakit Pada Daun Pakcoy Dengan Pengolahan Citra Menggunakan Metode Convolutional Neural Network,” in e-Proceeding of Engineering, 2020, vol. 7, no. 3, pp. 9347–9354.
[7] L. D. Nguyen, D. Lin, Z. Lin, and J. Cao, “Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation,” Proc. - IEEE Int. Symp. Circuits Syst., vol. 2018-May, pp. 3–7, 2018, doi: https://doi.org/10.1109/ISCAS.2018.8351550.
[8] A. Hidayatuloh, M. Nursalman, and E. Nugraha, “Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model,” in 2018 International Conference on Information Technology Systems and Innovation, ICITSI 2018 - Proceedings, 2018, pp. 199–204, doi: https://doi.org/10.1109/ICITSI.2018.8696087.
[9] S. Ilahiyah and A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 49–56, 2018.
[10] A. Santoso and G. Ariyanto, “Implementasi Deep Learning Berbasis Keras Untuk Pengenalan Wajah,” Emit. J. Tek. Elektro, vol. 18, no. 01, pp. 15–21, 2018, doi: https://doi.org/10.23917/emitor.v18i01.6235.
[11] U. Michelucci, Applied Deep Learning : A Case-Based Approach to Understanding Deep Neural Networks. New York: Springer Science and Business Media, 2018.
[12] G. Geetharamani and A. P. J., “Identification of plant leaf diseases using a nine-layer deep convolutional neural network,” Comput. Electr. Eng., vol. 76, pp. 323–338, 2019, doi: https://doi.org/10.1016/j.compeleceng.2019.04.011.
[13] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269, 2017, doi: https://doi.org/10.1109/CVPR.2017.243.
[14] A. L. Unihehu and I. Suharjo, “Klasifikasi Jenis Ikan Berbasis Jaringan Saraf Tiruan Menggunakan Algoritma Principal Component Analysis (PCA),” J. Ilm. Ilmu Komput. Fak. Ilmu Komput. Univ. Al Asyariah Mandar, vol. 7, no. 2, pp. 27–32, 2021, doi: https://doi.org/10.35329/jiik.v7i2.200.